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Calculus II C2Notes Fall, 1999–2000
by Professor C. E. Moore

Review of Differentiation and Anti-differentiation

As we begin Calculus II it is assumed that the student has covered the derivative of a function in
some detail and has learned how to find the anti-derivative of basic functions. This section is provided
as a summary of some of these topics. Knowledge of trigonometric functions, exponential functions, and
logarithmic functions is assumed, but will be reviewed as necessary throughout the course for reinforcement.

Definition of derivative. Suppose f is defined on an open interval containing x . The derivative of f at x
is defined by

Dx (f(x)) = f ′(x) ≡ lim
h→0

f(x + h)− f(x)
h

Tangent line. If f(x0) = y0 and f ′(x0) = m , then an equation for the line tangent to the curve y = f(x)
is given by

y − y0 = m(x− x0)

Rules of Differentiation Assume that a and b are real numbers and that f(x) and g(x) are differentiable
on an open interval containing x .

Rule 1. The derivative is linear. That is, Dx

(
af(x) + bg(x)

)
= aDx(f(x)) + bDx(g(x)) = af ′(x) + bg′(x).

Rule 2. Product Rule. Dx

(
f(x)g(x)

)
= Dx(f(x))g(x) + f(x)Dx(g(x)) = f ′(x)g(x) + f(x)g′(x).

Rule 3. Quotient Rule. On an interval where g(x) 6= 0,

Dx

(
f(x)
g(x)

)
=

g(x)Dx

(
f(x)

)− f(x)Dx

(
g(x)

)
(
g(x)

)2 =
g(x)f ′(x)− f(x)g′(x)(

g(x)
)2

Rule 4. Power function derivative. If r is a real number, then

Dx(xr) = rxr−1

Examples: Dx

(
x4/3

)
=

4
3
x1/3, Dx

(
1

x4/3

)
= −4

3
1

x7/3 , Dx

(√
x
)

=
1
2
x− 1

2 =
1

2
√

x

Rule 5. Chain Rule. On an open interval for which (f ◦ g)(x) ≡ f
(
g(x)

)
is defined

Dx

(
(f ◦ g)(x)

)
= f ′(g(x))g′(x)

Example: Dx

((
4 + x3)5) = (5)

(
4 + x3)4(3x2)

Rule 6. Reciprocal Rule. On an interval where f(x) 6= 0 we have

Dx

(
1

f(x)

)
=
−f ′(x)(
f(x)

)2
Derivatives of trigonometric functions. First, we list the derivatives of the three basic functions.

Dx(sinx) = cos x Dx(tanx) = sec2 x Dx(sec x) = (sec x)(tanx)

Then we use this information to help determine the derivatives of the cofunctions.

Function Derivative Cofunction Derivative

sinx cos x cos x − sinx
tanx sec2 x cot x − csc2 x
sec x sec x tanx csc x − csc x cot x
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Note that the first column is simply the three basic functions. The second column is the derivative of the
first column. The third column is a listing of the cofunctions of the first column. And to form the fourth
column, begin by putting a minus sign in front of the expression to follow. Then, simply put the respective
cofunctions of the second column after the minus sign.

Example: Dx

(
tan3(

√
x )
)

= 3 tan2(
√

x ) sec2(
√

x )
1

2
√

x
.

Derivative of exponential and logarithmic functions. Dx

(
ex
)

= ex and Dx(ln |x|) =
1
x

, x 6= 0. Also,

for a > 0, Dx

(
ax
)

= (ln a)ax .

We will limit our discussion on inverse trigonometric functions to

sin−1 x ≡ arcsin x and tan−1 x ≡ arctanx

We remind the reader that the exponents refer to inverse functions and not to reciprocals. The derivatives
and corresponding anti-derivatives we will need are listed below:

Dx(arcsinx) =
1√

1− x2

Dx(arctanx) =
1

1 + x2

∫
1√

1− x2
dx = arcsinx + C∫

1
1 + x2 dx = arctanx + C

Now we turn our attention to anti-derivatives. The easiest place to start is with the power rule.

Anti-derivative of xr . If r 6= −1, then
∫

xr dx =
1

r + 1
xr+1 + C .

The anti-derivatives of the basic trigonometric functions are found in the following table:

Function Anti-derivative Cofunction Anti-derivative

sinx − cos x + C cos x sinx + C
tanx ln | sec x|+ C cot x ln | sinx|+ C
sec x ln | sec x + tanx|+ C csc x ln | csc x− cot x|+ C

There are other basic trigonometric anti-derivatives that are easily found by reversing the differentiation
formulas.
Other trigonometric anti-derivatives.∫

sec2 x dx = tanx + C∫
csc2 x dx = − cot x + C

∫
(sec x)(tanx) dx = sec x + C∫
(csc x)(cot x) dx = − csc x + C

Anti-derivatives of exponential functions. It is assumed that a > 0.∫
ex dx = ex + C

∫
ax dx =

1
ln a

ax + C

Review Exercises: Find derivatives of the following: 1. x2 cos x 2.
lnx

x2 + 4
3. e3x tan(2x)

4. Find an equation for the line tangent to the curve y =
x + 3
4 + x2 at the point where x = 2.
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C2M0

Introduction to Maple V

Open Maple and obtain a blank worksheet. We are going to begin by establishing a format for each
Maple assignment that is to be handed in. Do not type the “<” or “>” shown to identify your entries. And
<Enter> means the “Enter” key. As you begin, the worksheet is in “math mode”, so ‘click’ on the T to
switch into “text mode”.

Type <C2M1> <Enter> and then highlight C2M1 and click on the middle of the three boxes to the
right of B I u so as to center C2M1. The left of these three buttons left-justifies text and the right one
right-justifies it. Now,
<down arrow> , then type your name and section as shown.
<Midn Your Name> <Enter>
<Section> <Your section> <Enter>
Having completed this, highlight the three lines and then click on B to boldface everything. This is the
format you should use for all Maple assignments to be handed in. For example, you should see something
like

C2M1
Midn John Doe
Section 1234

You may eliminate the brackets on the left by the function key <F9> . To return to math mode, click
on the [> . If we wanted to type a math formula while in text mode we would click on Σ . The class of
2001 has Release 4 of Maple V, and the classes of 2002 and 2003 have Release 5 or 5.1 . There are some
differences between the releases and we will address them as we proceed. Later in this section we will discuss
palettes which allow you to select commands from a menu and avoid using Maple syntax. It is the contention
of the author of these notes that learning some Maple syntax is beneficial to the student, so even though you
may accomplish the same things by clicking on a symbol, we will show you the syntax that would otherwise
be hidden.

There are several packages of programs in Maple that we will find useful. For many calculus operations
we will need “student”. In math mode, lines in Maple end with a semicolon or colon. If you put a colon
after the line then the display of the output is suppressed. Please type the command lines below in a new
worksheet exactly as you see them and note the output. This work is for your benefit and is not intended
to be handed in.
> with(student):
> A:=Int(xˆ2,x);
> value(A);
> B:=int(xˆ2,x);
> C=Int(xˆ2,x=2..5);
> value(C);

In the first line, the name “A” is being assigned to the unevaluated integral,
∫

x2 dx . Then we find the
value of “A”. By using the lowercase “i” we assign the name “B” to the value of the integral, rather than
the inert expression that is not yet evaluated. By eliminating the colon, we have established an equation
rather than assigning a name “C” to the integral. Think of it this way. The integral is being assigned to a
piece of memory named “A”, another piece of memory is assigned the value of that integral and is named
“B”, while an equation involving “C” and an unevaluated definite integral is established. Evaluating “C” is
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meaningless because there is no piece of memory with that name. Go back, insert the colon as was done with
“A” and hit <Enter> and then another <Enter> . The exact value of the integral, 39, should appear.
Be very careful of these subtleties, because Maple cannot read your mind. What happens when you put a
semicolon after ‘ with(student)’ instead of the colon?

In that same worksheet enter these command lines and observe the output.

> value(Piˆ2/6);
> evalf(Piˆ2/6);
> S100:=Sum(1/kˆ2,k=1..100);
> value(S100);
> evalf(S100);

The evalf command converts an exact numerical expression to a floating point number.

It is very important to know how to define a function, how to define an expression, and the difference
between them. To define the function f(x) = 4− 2x− x2 please enter:

f:=x->4-2*x-xˆ2;

And then evaluate f at x = 4/3 by:

f(4/3);

Now define an expression expr by:

expr:=4-2*x-xˆ2;

In order to evaluate an expression at a value, we must substitute into the expression. Try:

subs(x=4/3,expr);

And when we try to use an expression as if it were a function, we get garbage. Try:

garbage:=expr(4/3);

It will be very useful later to be able to make a function out of an expression. The syntax for this is
puzzling. Entering these commands should produce these results:

> P:=xˆ2+cos(x);
P := x2 + cos(x)

> G:=unapply(P,x);
G := x → x2 + cos(x)

> G(Pi);
π2 − 1

We see that G is a function and that G(x) = P .

Maple graphics are versatile and easy to use. Above we defined f(x) = x2 + cos(x) in our worksheet.
We can get a quick plot of f on [−2, 3] by:

> plot(f(x),x=-2..3,color=blue);
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Note how we used f(x) which is an expression, not just f , in this plot. To plot the function G from above
we could use P or G(x) and obtain identical results.

> plot(P,x=0..Pi,color=magenta);

1

2

3

4

5

6

7

8

9

0 0.5 1 1.5 2 2.5 3
x

When you wish to plot two functions with the same domain it can be done very easily. However, it is
very easy to confuse the syntax with parametric plotting. We will do an example of each so that you will
know where to be careful. The placement of the righthand square bracket determines which format you
have. In two-dimensional plotting, when you list two expressions and a range inside the square brackets the
first function controls the value on the x -axis and the second function controls the value on the y -axis. This
is parametric plotting. To save space the output follows on the left.

> plot([exp(x),xˆ2,x=-1..1]);
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Parametric Plotting Two Functions
When you do not include the domain inside the square brackets you get two different plots on the same
coordinate system as you can see above on the right. This was produced by:
> plot([exp(x),xˆ2],x=-1..1);

How should you plot two functions on the same coordinate axes which have different domains? The
answer is to give each plot a name using a colon at the end to suppress the output and then display
them together. The command display is in the graphics package called plots.
> with(plots):
> A:=plot(exp(x),x=-3..3): ← colon!
> B:=plot(ln(x),x=.01..4): ← colon!
> display(A,B); ← semicolon!

-5

0

5

10

15

20

-3 -2 -1 1 2 3 4
x

There are two operations that are very basic in calculus, namely differentiation and integration, or
anti-differentiation. Expressions in x and t can be differentiated with respect to either variable so we must
remember to specify the variable. Using the expression P = x2 + cos(x) from above we have
> Pprime:=diff(P,x);

Pprime := 2x− sin(x)
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And if we integrate P

> Pint:=int(P,x);

Pint :=
x3

3
+ sin(x)

Now let’s do some of the same steps by using a palette. On your command line type

A:=

There are three palettes and to access them you begin by clicking on “View”, then “Palettes”. If you need
symbols, select that palette, but for now we choose “expressions”. You should see

Click on the box with the integral symbol
∫

a . Then click on the box with ab . On your command line
the cursor appears where you want x inserted, so you type < x > , and then move to the next entry
position by using the ‘Tab’ key. Enter < 2 > , <Tab> , and then the variable of integration, < x >
and <Enter> . At the end of the command line put a semicolon and hit <Enter> . This should produce
> A:=int(xˆ2,x);

x3

3
Suppose you have a question about some aspect of using Maple and the syntax is confusing you. On

the command line simply type

<?topic> <Enter>

and Maple will display what you need to learn about “topic”. You can copy from the help page and paste
on the command line as needed.

C2M1

Change of Variable

The art of changing the variable in an integration (anti-differentiation) problem must be practiced in
order to master it. We learn this valuable tool by trial and error. Maple provides an easy environment
in which to try different substitutions. One simple rule to remember when substituting in Maple is that
exprold = exprnew is the order in which to write the change. Let’s begin by doing a simple change of variable
for

∫
cos4(3x) sin(3x) dx and then show how it can be done using Maple. Note that reference is made to the

third step of the substitution. Students who write out the steps of a substitution carefully, and
are meticulous when applying the third step, make far fewer errors than their colleagues who
do not. You have been warned!

Example:
∫

cos4(3x) sin(3x) dx Let’s try:
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u = cos(3x)
du = −3 sin(3x) dx

−1
3
du = sin(3x) dx (third step, − 1

3
du replaces sin(3x) dx)∫

cos4(3x) sin(3x) dx =
∫

(u)4(−1
3

du) = −1
3

∫
u4 du

= − 1
15

u5 + C now resubstitute,using u = cos(3x)

= − 1
15

cos5(3x) + C

Maple Example:
After we identify the integral by the name A and display it, we realize that cos(3x) will become

“u”. Since the “old” expression precedes the “new” one when doing a substitution in Maple, we write
“cos(3x) = u” when applying the Maple command changevar . Later when we resubstitute, we will use
“u = cos(3x)”. Now consider the Maple worksheet below, paying attention to the order used in the substi-
tutions:

> with(student):
> A:=Int((cos(3*x))ˆ4*sin(3*x),x);

A :=
∫

cos(3x)4 sin(3x) dx

> B:=changevar(cos(3*x)=u,A);

B :=
∫
−1

3
u4 du

> B:=value(B);

B := − 1
15

u5

> B:=subs(u=cos(3*x),B);

B := − 1
15

cos(3x)5

C2M1 Problems

These integral problems are to be done two ways. Do them with pencil and paper showing all details
and do them with Maple using changevar.

1.
∫

24x
(
4 + 9x2)5 dx 2.

∫
cos
√

x√
x

dx 3.
∫ (

9 + 5
x

)3/2

x2 dx

4.
∫

12x sin1/2(3x2) cos(3x2) dx

C2M2

Rational Fractions or Partial Fraction Decompositions

When you were learning basic algebra there were probably problems assigned on adding fractions which
had constants, linear expressions, and quadratic expressions in x in the numerators and denominators. Our
objective here is to take the answers to those questions and find the fractions that were added together.
The need here is to break down a complicated fraction into several simple ones whose anti-derivatives are
(much!) easier to find. To approach this systematically we separate the problems into groups determined
by the nature of the denominators of the fractions. Recall that P (x) = x2 − a2 can be factored into
P (x) = (x− a)(x + a), so we say that P (x) is reducible. Likewise, Q(x) = x2 + a2 can NOT be factored,
so Q(x) is irreducible. There are different approaches to to these problems and we will use substitution as
our method. Two principles from algebra are applicable here. The first states that if two polynomials in x
agree for all values of x , then the polynomials have the same coefficients, that is, they are identical. The
second states that x− r is a factor of the polynomial P (x) if and only if P (r) = 0.

In the following, P (x) is a polynomial in x and the degree of P is less than the degree of the denomi-
nator. For cases where the degree of P is greater than or equal to the degree of the denominator, one must
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divide the polynomials and then work with the remainder. Note that we are forcing the left and right sides
to agree for all x , so we may use ≡ instead of =.

I. The denominator has distinct linear factors. The expression on the left breaks down as shown:

P (x)
(x− r1)(x− r2) · · · (x− rn)

≡ a1

x− r1
+

a2

x− r2
+ · · ·+ an

x− rn

and the problem is reduced to determining the coefficients a1, a2, . . . , an . We are assuming that no two
factors are the same.

Example: Decompose
7x− 11

(x− 1)(x + 1)(x− 2)
. Each factor occurs with a constant numerator.

7x− 11
(x− 1)(x + 1)(x− 2)

=
a

x− 1
+

b

x + 1
+

c

x− 2
multiply through by the LHS denominator

7x− 11 = a(x + 1)(x− 2) + b(x− 1)(x− 2) + c(x− 1)(x + 1) substitute x = 1
−4 = a(2)(−1) so a = 2 substitute x = −1
−18 = b(−2)(−3) so b = −3 substitute x = 2

3 = c(1)(3) so c = 1

From this we conclude:

7x− 11
(x− 1)(x + 1)(x− 2)

=
2

x− 1
− 3

x + 1
+

1
x− 2

for all values of x except 1, −1, and 2.

II. The denominator has linear factors with repeat(s). In this case, each factor occurs as a denomina-
tor up to the power to which it occurs in the original denominator. It is easiest to explain with an example.
Suppose the original denominator is (x− 1)3(x + 2)2(x− 4) then the decomposition will look like:

a

x− 1
+

b

(x− 1)2
+

c

(x− 1)3
+

d

x + 2
+

e

(x + 2)2
+

f

x− 4

Example: Decompose
3x2 − 7x + 1

(x− 1)2(x + 2)
.

3x2 − 7x + 1
(x− 1)2(x + 2)

=
a

x− 1
+

b

(x− 1)2
+

c

x + 2
multiply by LHS denominator

3x2 − 7x + 1 = a(x− 1)(x + 2) + b(x + 2) + c(x− 1)2 substitute x = 1
−3 = b(3) so b = −1, substitute that value and simplify

3x2 − 7x + 1 = a(x− 1)(x + 2)− (x + 2) + c(x− 1)2 move (x + 2) to the other side

3x2 − 6x + 3 = a(x− 1)(x + 2) + c(x− 1)2 both sides must be divisible by x− 1, so divide
3x− 3 = a(x + 2) + c(x− 1) use x = 1 again

0 = 3a so a = 0 use x = −2
−9 = c(−3) so c = 3

And we conclude:

3x2 − 7x + 1
(x− 1)2(x + 2)

=
−1

(x− 1)2
− 3

x + 2

III. The denominator has an irreducible quadratic factor. A quadratic factor requires a linear
numerator such as ax + b .

Example: Decompose
x2 + 5

(x− 1)(x2 + 2)
.
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x2 + 5
(x− 1)(x2 + 2)

=
a

x− 1
+

bx + c

x2 + 2
multiply by LHS denominator

x2 + 5 = a(x2 + 2) + (bx + c)(x− 1) substitute x = 1
6 = a(3) so a = 2, substitute that value and simplify

x2 + 5 = 2x2 + 4 + (bx + c)(x− 1)

−x2 + 1 = (bx + c)(x− 1) both sides must be divisible by x− 1, so divide
−x− 1 = bx + c b = −1, c = −1

Our decomposition is:
x2 + 5

(x− 1)(x2 + 2)
=

2
x− 1

− x + 1
x2 + 2

IV. The denominator has a repeated linear factor and an irreducuble quadratic factor. The
method illustrated here is the easiest one for this case. This type of problem will be on the Final
Exam.

Example: Decompose
8x

(x− 1)2 (x2 + 3)
.

8x

(x− 1)2 (x2 + 3)
=

a

x− 1
+

b

(x− 1)2
+

cx + d

x2 + 3
multiply by LHS denominator

8x = a(x− 1)
(
x2 + 3

)
+ b

(
x2 + 3

)
+ (cx + d)(x− 1)2 substitute x = 1

8 = 4b so b = 2, substitute that value

8x = a(x− 1)
(
x2 + 3

)
+ 2x2 + 6 + (cx + d)(x− 1)2 move 2x2 + 6 to the LHS

−2x2 + 8x− 6 = a(x− 1)
(
x2 + 3

)
+ (cx + d)(x− 1)2 x− 1 is a factor of RHS and LHS, ÷

−2(x− 3) = a
(
x2 + 3

)
+ (cx + d)(x− 1) substitute x = 1

4 = 4a so a = 1, substitute that value

−2x + 6 = x2 + 3 + (cx + d)(x− 1) move x2 + 3 to the LHS

−x2 − 2x + 3 = (cx + d)(x− 1) divide by x− 1
−x− 3 = cx + d which forces c = −1 and d = −3

8x

(x− 1)2 (x2 + 3)
=

1
x− 1

+
2

(x− 1)2
− x + 3

x2 + 3

Now observe how Maple would have done the problem.
Maple Example:

> with(student):
> convert(8*x/((x-1)ˆ2*(xˆ2+3)),parfrac,x);

2
(x− 1)2

+
1

x− 1
− 3 + x

x2 + 3

C2M2 Problems

Find the partial fraction decompositions of the expressions using pencil and paper. Then, check your
answers using Maple as was done in the preceding Maple Example. Do NOT use Maple to duplicate your
pencil and paper work.

1.
8x + 5

(x + 1)2 (x2 + 2)
2.

4x2 + 4x + 12
x2 (x2 + 4)

3.
7x2 − 17x + 1

(x− 2)2 (x2 + 1)
4.

x3 − 2x2 + 2x− 1
x3 (x2 + 1)

10



C2M3

Simpson’s and Trapezoidal Rule

Riemann sums, Simpson’s Rule, and the Trapezoidal Rule are available in Maple in the Student package.
The example chosen here involves the sine function on the interval [1, 3] using 60 subintervals for the sums
and 10 subintervals for the graphics. Because we wanted the decimal or floating point answer we used
evalf instead of value , which would have listed a long summation. The actual integral is

∫ 3
1 sinx dx =

− cos 3 + cos 1 ≈ 1.530294803. Please observe the output of each command line below.
> restart: with(student):
> simpson(sin(x),x=1..3,60);

1
90

sin(1) +
1
90

sin(3) +
2
45

(
30∑

i=1

sin
(

29
30

+
1
15

i

))
+

1
45

(
29∑

i=1

sin
(

1 +
1
15

i

))

> evalf(%);
1.530294813

> trapezoid(sin(x),x=1..3,60);

1
60

sin(1) +
1
30

(
59∑

i=1

sin
(

1 +
1
30

i

))
+

1
60

sin(3)

> evalf(%);
1.530153105

> Int(sin(x),x=1..3); ∫ 3

1
sin(x) dx

> value(%);
− cos(3) + cos(1)

> evalf(%);
1.530294803

Accuracy The error estimates for the Trapezoidal Rule and Simpson’s Rule are stated in the course
textbook. As a reminder, if |f ′′(x)| ≤ K and |f (iv)(x)| ≤M , and n subintervals are used, then the errors
for the respective rules, ET and ES , satisfy

|ET | ≤ K(b− a)3

12 n2 and |ES | ≤ M(b− a)5

180 n4

when applied over the interval [a, b] .

Trapezoidal Rule Maple Example Approximate
∫ π/3

0
sin(2x) dx to within 1

1000 using the Trapezoidal

Rule. Determine the number of subintervals necessary to achieve the requested accuracy by applying the
estimate displayed above. It is best if our second derivative is a function, so we use unapply to create a
function from an expression.

> restart: with(student):
> f:=x->sin(2*x);

f := x→ sin(2x)
> f2:=unapply(diff(f(x),x,x),x);

f2 := x→ −4 sin(2x)
At this point we have the second derivative of f as a function. We must find the maximum value of the

absolute value of the second derivative on the interval.
> K:=maximize(abs(f2(x)),x,{x=0..evalf(Pi/3)});

K := 4
Equate the error and the overestimate and solve for the value of n that works.
> Eqn1:=(Pi/3-0)ˆ3*K/(12*nˆ2)=1/1000;

Eqn1 :=
1
81

π3

n2 =
1

1000
> solve(Eqn1,n);

10
9

√
10 π(3/2),−10

9

√
10 π(3/2)
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> evalf(%);
19.56511025,−19.56511025

Since n must be an integer, choose n = 20

> app:=trapezoid(f(x),x=0..Pi/3,20);

app :=
1

120
π

(
2

(
19∑

i=1

sin
(

1
30

iπ

))
+

1
2

√
3

)

> approx:=evalf(app);
approx := .7493144853

> ans:=evalf(int(f(x),x=0..Pi/3));
ans := .7500000000

> abs(approx-ans);
.0006855147

So, we have achieved the requested accuracy.

C2M3 Problems:

1. Use Maple to find the requested approximations.
∫ 2

0

√
1 + x2 dx , n = 40, use simpson, trapezoid

2. Modify the Maple Example above and use Simpson’s Rule instead of the Trapezoidal Rule to approximate∫ 2

0

x2

1 + x4 dx to within 1
1000 .

3. Modify the Maple Example above and then use Simpson’s Rule instead of the Trapezoidal Rule to

approximate
∫ 1

0
x arctan(x) dx to within 1

10000 .

C2M4

Improper Integrals

Improper integrals can occur in two different ways. The interval of integration can be unbounded, or
the integrand can be an unbounded function. As you know, in the respective cases

∫ ∞

a

f(x) dx ≡ lim
M→∞

∫ M

a

f(x) dx

∫ b

a

f(x) dx ≡ lim
t→a+

∫ b

t

f(x) dx

where, in the second case f is unbounded at a . In Maple, we will evaluate the integral from a to M and
then evaluate the limit of that result as the definition suggests in order to reinforce the concepts.
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Maple Example:

Evaluate the improper integral
∫ ∞

1
e−2x dx

We find an expression A(M) which expresses the area
of the region under the curve as a function of the righthand
endpoint, M . Then we evaluate the limit

lim
M→∞

A(M)

1 A(M) M

exp(-2*x)

> with(student):
> A:=Int(exp(-2*x),x=1..M);

A :=
∫ M

1
e(−2x) dx

> A:=value(A);

A := −1
2
e(−2M) +

1
2
e(−2)

> limit(A,M=infinity);
1
2
e(−2)

Maple Example: Evaluate the improper integral
∫ 1

0

1
x1/3 dx Note that the integrand is discontin-

uous at the lefthand endpoint.

> B:=Int(xˆ(-1/3),x=t..1);

B :=
∫ 1

t

1
x1/3 dx

> B:=value(B);

B :=
3
2
− 3

2
t 2/3

> limit(B,t=0);
3
2

C2M4 Problems Evaluate the improper integrals using Maple.

1.
∫ ∞

2

1
x4/3 dx 2.

∫ ∞

3

lnx

x
dx 3.

∫ 8

0
x−2/3 dx 4.

∫ 1

0
x lnx dx

5.
∫ 1

0

e
√

x

√
x

dx
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C2M5

Parametric Functions

Have you ever played with a toy called ”Etch-a-Sketch”? One hand controls the x -axis while the other
controls the y -axis. It is as if you are graphing (x(t), y(t)) , a ≤ t ≤ b , which is exactly what happens when
a function in the plane is defined parametrically. Be very careful where you place the right bracket, ] , when
using Maple to plot parametric graphs.
Maple Example: Plot x(t) = sin(13t) , y(t) = cos(7t) for 0 ≤ t ≤ 6π which produces a lissajou. The
plot is on the left below. As you can see, the scaling is a little off because the “square” is two units on each
side. For a little fun, increase the coefficients to say 43 and 37 and see what happens. You may also wish to
increase the domain.
> plot([sin(13*t),cos(7*t),t=0..6*Pi],color=navy);
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Maple Example: Ellipses are easy this way. Plot
x2

32 +
y2

22 = 1. The Maple output is above on the right.

When you have
x2

a2 +
y2

b2 = 1 you may plot this by using x(t) = a cos(t) and y(t) = b sin(t) for 0 ≤ t ≤ 2π .
So,
> plot([3*cos(t),2*sin(t),t=0..2*Pi]);

C2M5 Problems Use Maple to display the parametric graphs of the given functions.
1. x = et, y = e2t, −1 ≤ t ≤ 2 2. x = 2 sec t, y = tan t, −π/2 < t < π/2
3. x = t− sin t, y = 1− cos t, 0 ≤ t ≤ 4π 4. x = cos3 t, y = sin3 t, 0 ≤ t ≤ 2π

C2M6

Polar Coordinates

For many graphs in polar coordinates the easiest place to start is with a rectangular plot. We will call
these helper diagrams. For the function r = 2 sin(3θ) we have the rectangular plot on the left and the polar
plot on the right. We can see from the helper diagram that as θ varies from 0 to π/3 the radius will start
at 0, reach 1 at π/6, and decrease back to 0 at π/3. The next thing we observe is that from π/3 to 2π/3
the radius will take on negative values. At each point where the helper diagram attains the value 2, the
polar graph will be two units from the origin for that angle. And, whenever the helper diagram has the value
of −2, the polar graph will be two units in the opposite direction of that angle. At points on the helper
diagram where the value is 0, the polar graph will be tangent to that angle as the graph passes through
the polar origin. To sketch the polar plot, begin by drawing a circle of radius 2, then draw radial lines for
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multiples of π/6. Mark the intersection for each peak and valley of the helper diagram. These have polar
coordinates whose angles correspond to odd multiples of π/6. Remember, sometimes it is a 2 and sometimes
it is a radius of −2. On the polar graph, put your finger at the origin and trace the plot, realizing that you
are going to go around the plot twice.

-2

-1

0

1

2

1 2 3 4 5 6

t

-2

-1

0

1

2

-2 -1 1 2

Plotting in polar coordinates is very easy using Maple. We need the library plots in order to use
polarplot. We will use t instead of θ as the variable sometimes.

Maple Example 1: Plot r = 2 sin(3θ). On the right, r = 2 cos(3θ) is displayed so that you may compare.

> with(plots):
> polarplot(2*sin(3*t),t=0..2*Pi,color=green);
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Maple Example 2: Polarplot may also be used parametrically. We will define two plots and give them
names, A1 and B1, and end their lines with colons to suppress the output. Using polarplot parametrically,
the first coordinate determines r and the second determines θ . Each may be functions of a third variable
whose domain must be specified within the square brackets.

Maple Example 3:
> with(plots):
> A1:=polarplot([r,Pi/3,r=1..Pi],color=blue):
> B1:=polarplot([2,theta,theta=-Pi/3..3*Pi/4]):
> display({A1,B1});
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Maple Example 4: Suppose we consider the vertical line x = 2. We know that x = r cos(θ) in polar
coordinates, so set the x values equal. This means that r cos(θ) = 2 and that we may solve for r , which
produces

r =
2

cos(θ)
= 2 sec(θ)

We must avoid dividing by 0, so odd multiples of π/2 must be avoided. Here we will stay between −π/3
and π/3.

> with(plots):
> polarplot([2*sec(t),t,t=-Pi/3..Pi/3]);

-3

-2

-1

0

1

2

3

1 1.5 2 2.5 3

C2M6 Problems Use Maple to determine the polar graphs of the given functions. Remember, you must
set the domain. Also, resize the output to a reasonable size. Save paper.
1. r = 1 + cos(θ) 2. r = 2 csc(θ) 3. r =

√
2− 2 cos(θ) 4. r = θ, −π ≤ θ ≤ 2π
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C2M7

Solutions of Differential Equations

A differential equation arises when there is a relationship involving a function and one or more of its
derivatives. For example

y′′ + 5y′ + 6y = 0

is such an equation. A function is a solution of this equation if you obtain 0 when you add its second
derivative to 5 times its first derivative and then add 6 times the function itself.
Maple Example 1 Use Maple to verify that y(t) = ae−3t + be−2t is a solution of the differential equation
shown above, where a and b are arbitrary constants.
> with(student):
> de1:={diff(y(t),t,t)+5*diff(y(t),t)+6*y(t)=0};

de1 := {
(

∂2

∂t2
y(t)

)
+ 5

(
∂

∂t
y(t)

)
+ 6 y(t) = 0}

> y1:=a*exp(-3*t)+b*exp(-2*t);
y1 := ae(−3t) + be(−2t)

> eval(de1,y(t)=y1);
{0 = 0}

which shows that for any constants a and b , y(t) is a solution of the given equation.
Maple Example 2 Determine whether y(x) = ex + ce−2x is a solution of

y′ + 2y = 3ex

for any value of the constant c .
> de2:={diff(y(x),x)+2*y(x)=3*exp(x)};

de2 : {
(

∂

∂x
y(x)

)
+ 2y(x) = 3ex}

> y2:=exp(x)+c*exp(-2*x);
y2 := ex + ce(−2x)

> eval(de2,y(x)=y2);
{3ex = 3ex}

How would we know if we did not have a solution? let’s define a different function and see what happens.
> y3:=2*exp(x)+C*exp(-2*x);

y3 := 2ex + Ce(−2x)

> eval(de2,y(x)=y3);
{6ex = 3ex}

Now in order for y3 to be a solution, the last equation, 6ex = 3ex , would have to be true for every x . But
this is true for no x , so y3 is not a solution.

C2M7 Problems: Use Maple and the method illustrated above to determine whether the given function
is a solution of the differential equation.

1. y = sinx + x2, y′′ + y = x2 + 2

2. y = e2x − 3e−x, y′′ − y′ − 2y = 0

3. x = 2e3t − e2t,
d2x

dt2
− x

dx

dt
+ 3x = −2e2t

4. x = cos 2t,
dx

dt
+ tx = sin 2t

5. x = cos t− 2 sin t, x′′ + x = 0
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Maple V Spreadsheets

In Release 5 or 5.1 of Maple V the user may insert a spreadsheet into the Maple worksheet. One
characteristic of these spreadsheets that must be noted early is that changing an entry does not cause the
spreadsheet to immediately recalculate as is the case in the standard spreadsheet. This is easily done by
clicking on a button, however. The reader is reminded that the easiest way to get help or information about
spreadsheets in Maple is to enter a worksheet and type in

> ?spreadsheet <enter>

and a list of topics is displayed. The reader is warned that there is an error in the identification of row and
column headers in the section that tries to explain which is which. Column headers are listed in a row as
A, B, C, etc. while row headers are listed next to the first column as 1, 2, 3, etc. This is reversed in the
diagram you would see in the help display.

Please open a blank worksheet and enter the following lines:

> with(student):
> f:=x->2+2*x-xˆ2;

f := x→ 2 + 2x− x2

> g:=x->sin(2*x);
g := x→ sin(2x)

With the mouse, move the cursor arrow to the command Insert, click and then click on Spreadsheet. In
addition to the material already entered, you should see a blank spreadsheet ready to be resized to fit your
needs. Before we do that, note that the menu bars above have changed and that they look like this:

Before you inserted the spreadsheet, you could not select Spreadsheet, but now it is an option. Click
on it and check out the menu. Note the four boxes on the left and below the main bar. The one to the left
is very useful. When you need to fill cells in a spreadsheet in some direction, click on this box. More specific
instructions follow when this process is needed in our example.

Now we are ready to resize the blank spreadsheet. Outside the spreadsheet, but near the lower righthand
corner, click the mouse. A drag box outline should appear around the spreadsheet. Then, move the cursor
to that corner until the diagonal arrow appears. Move that corner down and to the left so that you end up
with five columns and 15 or so rows. This might take several tries. When you have done this, click on the
cell in row 1 and column A. In the first row, enter x, f(x), x, and g(x). The arrow keys will move from one
cell to another. You will note that the value of the function has appeared where you entered f(x) and g(x).
We are going to illustrate different methods to accomplish the same things. In cell A2 enter 0 and move to
cell B2. One option here is to enter f(˜A2) and we will do that. The other is to enter eval(˜$B$1,x=˜A2).
The dollar signs mean that cell B1 will always be used and not just refer to the cell directly above. This is
an absolute reference rather than a relative one.

Our objective now is to fill in the two columns, A and B. Click on A2 and highlight down to cell A12.
The menus at the top of the screen change when you are in a spreadsheet. At the extreme left and on the
third row of the menus, you will find a button that looks like three window panes and the shade is pulled
down in the top one. It also has an arrow pointing down. Click on this button and a menu pops up. Click
on the window that indicates ‘step size’ and enter .1 , then click on OK. You should see the first column of
the completed spreadsheet. Move to cell B2 and highlight down to B12. On the top line of the menus click
Spreadsheet, click on Fill - Down. You don’t actually click on Fill because when the arrow touches it,
the side menu with Down pops up immediately. This should complete the second column.

Before continuing with the spreadsheet entries, move the cursor outside of the spreadsheet to the com-
mand line above the spreadsheet and hit <Enter> . This should cause a command line to appear below the
spreadsheet. Enter M := on that line and then highlight the cells in the first two columns from A2 to
B12.
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Click on the Copy button, move the cursor to after the M :=
on the line below, and click on the Paste button. Immediately
put a colon at the end of the line and then <Enter> . The
colon suppresses the output, which is a matrix of 2×2 matri-
ces. On the next line enter c:=convert(M,listlist); and
a list of those 2 × 2 matrices is shown. We can use this list
in an interesting way. Enter plot(c,style=line); and
<Enter> , and a plot appears. It is rather smooth because
our x values are close together.

Let’s return to the spreadsheet and put 0 in cell C2.
Move down to cell C3 and enter ˜C2+Pi/12 . Then, highlight
from C2 to C12 and click on Spreadsheet, Fill - Down.
In cell D2 enter eval(˜$D$1,˜C2) and 0 appears. Highlight
D3 down to D12, then click on Spreadsheet, Fill - Down.
This completes the spreadsheet.

Here is the tricky part. To plot the second function, high-
light the rectangular area C2 to D12, copy and paste to the
command line below the spreadsheet, insert
M1:= before MATRIX,

a colon : at the end of the last line, and <Enter> .
On the next line put
c1:=convert(M1,listlist); <Enter>

and follow that line with
plot(c1,style=line); and <Enter> ,

and a polygonal graph appears. The spreadsheet is on the
right and the remainder of the worksheet follows.

> M:=MATRIX([[0, 2], [.1, 2.19], [.2, 2.36], [.3, 2.51], [.4, 2.64], [.5, 2.75],
[.6, 2.84], [.7, 2.91],[.8, 2.96], [.9, 2.99], [1, 3]]):

> c:=convert(M,listlist);

c := [[0, 2], [.1, 2.19], [.2, 2.36], [.3, 2.51], [.4, 2.64], [.5, 2.75], [.6, 2.84], [.7, 2.91], [.8, 2.96], [.9, 2.99], [1, 3]]

> plot(c,style=line);
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> M1:=MATRIX([[1/12*Pi, 1/2], [1/6*Pi, 1/2*sqrt(3)], [1/4*Pi, 1], [1/3*Pi, 1/2*sqrt(3)],
[5/12*Pi, 1/2],[1/2*Pi, 0], [7/12*Pi, -1/2], [2/3*Pi, -1/2*sqrt(3)], [3/4*Pi, -1],
[5/6*Pi, -1/2*sqrt(3)]]):

> c1:=convert(M1,listlist);

c1 := [[
1
12

π,
1
2
], [

1
6
π,

1
2

√
3], [

1
4
π, 1], [

1
3
π,

1
2

√
3], [

5
12

π,
1
2
], [

1
2
π, 0], [

7
12

π,
−1
2

],

[
2
3
π,
−1
2

√
3], [

3
4
π,−1], [

5
6
π,
−1
2

√
3]]

> plot(c1,style=line);
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Do you remember the array of trigonometric derivatives in the Review section at the beginning of these
notes? It should be easy to duplicate using a Maple spreadsheet. Open a spreadsheet and in the first row
insert function, derivative, cofunction, derivative. In the first column, A, starting with A2, enter sin(x),
tan(x), and sec(x). Move to B2 and enter diff(˜A2,x). Highlight B2 to B4, then click on Spreadsheet,
Fill - Down successively. Enter the cofunctions in Column C, and the derivatives in column D similar to
how you handled column B.

Let’s consider one more example. Start a worksheet, define a function f(x) = cos(2x), and set a = Pi/6
Open a spreadsheet and in cell A1 put f(x). Move to A2 and enter diff(˜A1,x). Highlight A2 down
to A8. Click on Spreadsheet, Fill - Down and note that succesive derivatives appear. In B1, put
eval(˜A1,x=a) and then highlight B1 down to B8. Click on Spreadsheet, Fill - Down. When you reach
the section on Taylor series you will realize just how useful a spreadsheet like this example can be.
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C2M8

Direction Fields and Euler’s Method

Direction Fields As we begin our study of differential equations we come across equations of the form
y′ = f(x, y), which means that at each point in some region the slopes of solutions of the equation are
known. It is very useful to be able to plot short line segments at a reasonable number of points and thereby
have a picture of the behavior of these slopes. The command we need in Maple is found in the package
‘plots’ and the problem is that the input must have two coordinates, not one. We can get around this by
making the first coordinate equal to 1 and the second the value of f(x, y).
Maple Example: Suppose we are given a direction field y′ = x + y and we wish to plot it.
> with(plots):
> f:=(x,y)->x+y;

f := (x, y)→ x + y
> F:=(x,y)->[1,f(x,y)];

F := (x, y)→ [1, f(x, y)]
> fieldplot(F(x,y),x=-1..2,y=0..4);
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Euler’s Method This method assumes that a direction field, y′ = f(x, y), and a boundary value, y0 =
y(x0), are known for a potential solution y . Starting at x0 , a linear approximation is used to locate a second
point and this process is repeated until an approximate solution for the equation is found for x = xn . Let’s
begin by recalling the point-slope form for the equation of a line:

y − y0 = m(x− x0)

Identify h = x− x0 and m = f(x0, y0) and you have

y = y0 + f(x0, y0)h or
yi+1 = yi + f(xi, yi)h

when this is viewed as an iterative process. As you will soon see, spreadsheets are quite useful here.
Maple Example Let’s consider the direction field from our example above and the boundary value y(0) =
1 and approximate the value of y(1) by using a spreadsheet. For simplicity, we will redefine f in this
worksheet. The readers are urged to do the steps on their computers as they read along.

21



with(plots):
> f:=(x,y)->x+y;

f := (x, y)→ x + y

Click on Insert and Spreadsheet and resize the spreadsheet so that there are 3 columns and 12 rows.
In the first row insert n, xn, yn, move to the second row and insert 0, 0, 1. That last value is y(0).
First column. Highlight the first column from A2 to A12, and then click on the button on the extreme left
of the third row of the menus at the top of the page. The button looks like a window with three vertical
panes and the blind pulled down over the top pane, along with an arrow pointing down. In the menu box
that appears, insert a step size of 1 and a stop value of 10.
Second column. Highlight the second column from B2 to B12, click on the button above on the extreme
left (same as before), and insert a step size of .1 and a stop value of 1.

Third column. Carefully insert into C3: ˜C2+(.1)*f(˜B2,˜C2) and <Enter> . Note how this entry
will reflect the old value of y plus the slope times the change in x , as it should. To complete this column,
highlight from C3 to C12, click on Spreadsheet, Fill, and Down. The spreadsheet should look like the
one displayed below.

There should be a prompt > below the spreadsheet. Enter M := and then highlight the region in the
spreadsheet from B2 to C12, click on the Copy button at the top, move the cursor to after the M:= on
the line below and then click on the Paste button at the top. Insert a colon at the end of that line, and
then <Enter> . You should see:

> M:=MATRIX([[0, 1], [.1, 1.1], [.2, 1.22], [.3, 1.362], [.4,
1.5282], [.5, 1.72102], [.6, 1.943122], [.7, 2.1974342], [.8,
2.48717762], [.9, 2.815895382], [1, 3.187484920]]):
>

Now we must pair the points together by converting this matrix of 1 × 2 matrices to a list of 1 × 2
matrices. Then we will be able to treat each 1× 2 matrix as a point in the plane and plot the graph.
> a:=convert(M,listlist);
a := [[0, 1], [.1, 1.1], [.2, 1.22], [.3, 1.362], [.4, 1.5282], [.5, 1.72102], [.6, 1.943122],

[.7, 2.1974342], [.8, 2.48717762], [.9, 2.815895382], [1, 3.187484920]]
We are going to plot these points and join them together with line segments, and then display the plot

at the same time that we display the direction field. This means that we must give these plots names and
suppress their output until we are ready.
> A:=pointplot(a,style=line,color=blue):

Now to construct a function that Maple can interpret as acceptable for the command fieldplot:
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> F:=(x,y)->[1,f(x,y)];
F := (x, y)→ [1, f(x, y)]

> B:=fieldplot(F(x,y),x=-1..2,y=0..4):

Because we happen to know the solution to this equation we will include it in the plot.
> C:=plot(2*exp(x)-x-1,x=-1..1.2,color=red):
> display(A,B,C);
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C2M8 Problem Use Maple to graph an approximation to the solution of the differential equation

y′ = x− y2 y(1) = −1

Use a step size of 0.1 and approximate y(3). This requires twenty steps. The work you submit should reflect
the Maple Example above and should display the spreadsheet and display the approximation on the same
plot with the direction field. Do not be concerned about the precise solution.

C2M9

Growth and Decay

The exponential function appears in many problems that involve physical phenomena. Newton’s Law
of Cooling, growth and decay, and the mixing of solutions come to mind as examples. In each case, the rate
of change of some quantity is proportional to some aspect of the amount present. Imagine placing one steel
bar at 32◦ Fahrenheit in a room that is 40◦ and another in a room that is 100◦ . Certainly the temperature
of the second bar will change more rapidly than that of the first. Newton’s Law of Cooling asserts that
the rate of change of the surface temperature of an object is proportional to the difference between that
temperature and that of the surrounding medium. So if F is the temperature of the steel bar and RT is
the room temperature, then

dF

dt
= k (F −RT )

Example: Suppose that a steel bar is cooled to −10◦ F and it is placed in a room that is 70◦ F. Ten
minutes later the temperature of the bar is 25◦ . Find an expression for the temperature at any time t and
specifically at t = 30. By column
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dF
dt = k(F − 70) F (10) = 25 = 70− 80 e10k

dF
F−70 = k dt 80 e10k = 70− 25 = 45∫

dF
F−70 =

∫
k dt e10k = 45

80 = 9
16

ln |F − 70| = kt + C but |F − 70| = 70− F 10k = ln 9
16

70− F = ekt+C F (0) = −10 ⇒ C = ln 80 k = −.0575364
F = 70− ekt+ln 80 = 70− 80ekt F = 70− 80e−.0575364 t

which yields F (30) = 55.7617◦ . The exponential term goes to zero as time increases, so let’s use Maple to
graph F and see how F tends to 70.
> with(plots):
> F:=70-80*exp(-.0575364*t);

F := 70− 80 e(−.0575364 t)

> A:=plot(F,t=0..50):
> B:=plot(70,t=0..50):
> display(A,B);
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Consider how the slope of the tangent line will change as a point moves from left to right along the
curve. This means that the rate of change is a decreasing function, which is consistent with Newton’s Law
of Cooling.

C2M9 Problems: In problems 1 and 2, use Maple to plot the graph(s) of the given function(s) on the
same axes. Remember that the exponential function ex in Maple is exp(x).

1. f(t) = 60 + 30 e−.3 t g(t) = 60, 0 ≤ t ≤ 40
2. h(t) = 3 e−t, j(t) = −4 e−3 t, h(t) + j(t), 0 ≤ t ≤ 6
3. (Pencil and paper) A steel bar is heated to 200◦ and placed in a room whose temperature is 60◦ . Thirty
minutes later the bar is 110◦ .

(a) Find an expression for the temperature of the bar at any time t .
(b) At what time will the temperature of the bar be 80◦ ?
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C2M10

Sequences

When your instructor told you that a sequence is a function whose domain is the natural numbers, or
a subset thereof, it is possible that you did not attach as much importance to that idea as you did to the
mechanics of dealing with sequences. Maple allows us to define expressions and functions, and it is sometimes

confusing as to which we want to use. We will define the sequence {an} =
{

n + 2
3n− 1

}
as an expression and

the sequence {bn} =
{√

n2 + 3n− n
}

as a function to illustrate how they must be handled differently.

Maple Example 1: {an} =
{

n + 2
3n− 1

}
> with(student):
> a:=(n+2)/(3*n-1);

a :=
n + 2
3n− 1

> seq(a,n=1..10);
3
2
,
4
5
,
5,

8
,

6
11

,
1
2
,

8
17

,
9
20

,
10
23

,
11,

26
,
12
29

> limit(a,n=infinity);
1
3

Maple Example 2: {bn} =
{√

n2 + 3n− n
}

> with(student):
> b:=n->sqrt(nˆ2+3n)-n;

b := n→
√

n2 + 3n− n
> seq(b(n),n=1..10);

1,
√

10− 2, 3
√

2− 3, 2
√

7− 4, 2
√

10− 5, 3
√

6− 6,
√

70− 7, s
√

22− 8, 6
√

3− 9,
√

130− 10
> limit(b(n),n=infinity);

3
2

To understand this last limit, consider multiplying bn by its conjugate, and then dividing by it.(√
n2 + 3n− n

)
·
√

n2 + 3n + n√
n2 + 3n + n

=
n2 + 3n− n2
√

n2 + 3n + n
=

3n√
n2 + 3n + n

· 1/n

1/n
=

3√
1 + 3/n + 1

→ 3
2

with the limit taken as n→∞ .
The sequence {an} is obtained from an expression whose name is a while the sequence {bn} is obtained

by evaluating a function whose name is b . If we had the command seq(b,n=1..10); what would we have
obtained? The answer - ten b ’s, because the function b must be evaluated in order for it to have a value.

This will be very important in the next section when we will need to consider the term
bn+1

bn
=

b(n + 1)
b(n)

.

It would be cumbersome and less clear to find
an+1

an
when a is an expression. The command would be

subs(n=n+1,a)/a;.

C2M10 Problems Using Maple, find the first ten terms of each sequence and the limit of each.

1. an =
{

n2

3n

}
2. bn =

{
n2 − 3n + 4
5 + 2n + 6n2

}
3. cn =

{(
1 +

2
n

)n}

4. dn =
{(

1− 2
n

)n}
5. en =

{√
n2 + 6n− n

}
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C2M11

Ratio Test

The ratio test is one of the most important tools in the study of infinite series. Its validity is a
consequence of what we know about geometric series. For Maple purposes we will define the sequence

upon which the series is based as a function of n . So we will use
∞∑

n=1

an =
∞∑

n=1

a(n) which emphasizes that

an = a(n) is really a function of n .

Example: Discuss the convergence/divergence of the series
∞∑

n=1

22n+1

n 5n
.

We use the ratio test and consider
an+1

an
=

22n+3

(n + 1) 5n+1 ·
n 5n

22n+1 =
22 n

5 (n + 1)
. Take the limit

lim
n→∞

an+1

an
= lim

n→∞
22 n

5 (n + 1)
=

4
5

and conclude that the given series converges because the limit is less than

one. Now, let’s do this same problem using Maple. Note how we define an = a(n) as a function, but the
ratio, rn , is an expression.
Maple Example:

> with(student):
> a:=n->2ˆ(2*n+1)/n*5ˆn); nth term of series

a := n→ 2(2n+1)

n 5n

> rn:=a(n+1)/a(n); ratio for series

rn :=
2(2n+3)n 5n

(n + 1) 5(n+1)2(2n+1)

> rn:=simplify(rn);

rn :=
4
5

n

n + 1
> limit(rn,n=infinity);

4
5

C2M11 Problems Use Maple to assist with the ratio test for the given series. Remember to include a
concluding remark about the ratio test results.

1.
∞∑

n=1

(n + 1)2

3n n!
2.

∞∑
n=1

(3n)!
22n7n(n!)3

3.
∞∑

n=1

n!
nn

C2M12

Ratio Test for Power Series

We extend our use of Maple to power series by employing the same approach as in the previous section,
but realizing that there will be a variable, or parameter, x involved. We may no longer assume that all the
terms are positive, so the absolute value must be used.

Example: Find the open interval of convergence for the power series
∞∑

n=1

2n xn

n 3n+1 .

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ 2n+1xn+1

(n + 1) 3n+2 ·
n 3n+1

2n xn

∣∣∣∣ = 2
3

∣∣∣∣ n

n + 1

∣∣∣∣ · |x| → 2
3
|x| with the limit taken as n goes to infinity and

x is held constant. When are we guaranteed that this series will converge? When the limit of the ratio test

is forced to be less than one. Thus,
2
3
|x| < 1 ⇒ |x| < 3

2
. We conclude that the series converges for all x

in the open interval
(−3

2 , 3
2

)
.
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Maple Example: Use Maple to find the open interval of convergence of the previous example.
> an:=n->(2ˆn*xˆn)/(n*3ˆ(n+1));

an := n→ 2n xn

n 3(n+1)

> rn:=an(n+1)/an(n);

rn :=
2(n+1) x(n+1) n 3(n+1)

(n + 1) 3(n+2)2n xn

> rn:=abs(simplify(rn));

rn :=
2
3

∣∣∣∣ xn

n + 1

∣∣∣∣
> limit(rn,n=infinity);

2
3
|x|

> solve(%<1,x);

RealRange
(

Open
(−3

2

)
,Open

(3
2

))
So the open interval (−3/2, 3/2) is our answer.

C2M12 Problems: Use Maple to find the open interval of convergence of the given power series.

1.
∞∑

n=1

n!xn

nn
2.

∞∑
n=1

nxn

(n + 1)!
3.

∞∑
n=1

n!(2n)!xn

(3n)!
4.

∞∑
n=1

(2/3)n(x + 2)n

n2

C2M13

Maclaurin and Taylor Series

It is remarkable that knowing about the values of a function and its derivatives at a point provides a
means of evaluating the function at points nearby. Maclaurin and Taylor series are that means. Taylor and
Maclaurin series are written respectively as

f(x) =
∞∑

n=0

f (n)(c)
n !

(x− c)n f(x) =
∞∑

n=0

f (n)(0)
n !

xn

where, by letting c = 0, we see that the Maclaurin series is a special case of the Taylor series. The reader is
reminded that

0! = 1
1! = 1 · 0! = 1
2! = 2 · 1! = 2
3! = 3 · 2! = 6
4! = 4 · 3! = 24
5! = 5 · 4! = 120
6! = 6 · 5! = 720
7! = 7 · 6! = 5040
8! = 8 · 7! = 40320
9! = 9 · 8! = 362880

10! = 10 · 9! = 3628800

Just for fun, in a Maple worksheet enter 357!; . The speed with which this computation is done is remarkable.

Frequently it is useful to write out the first few terms of a Taylor series. The result is a Taylor Polynomial.
For example,

Tn = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . . +

f (n)(a)
n!

(x− a)n
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The Maple syntax for a Taylor polynomial of degree n at x = a is:
> taylor(f(x),x=a,n);

Every student should grind out a few Taylor series by hand so that they appreciate how the coefficients
are determined. But, we can use Maple spreadsheets to accomplish the same thing. A worksheet entitled
Taylor Series Worksheet follows that does exactly that. We will explain a few subtleties of the ‘how’s
and why’s’ of this worksheet now.

Begin by defining the function f(x) = cos(2x) and identifying a = π/6. Recall that to open the
spreadsheet you must click on Insert and the Spreadsheet. Resize it so that it shows about 10 rows and
4 columns. Enter n in cell A1, function in cell B1 and x = a in cell C1. Put 0 in A2, f(x) in B2,
and then eval(˜B2,x=a) in C2. Continue by highlighting from A2 down to A8, click on the button on
the third row of the menus at the extreme left, insert a step size of 1, and then click OK. Move to cell B3.
Enter diff(˜B2,x) and then highlight that cell down to B8. Click on Spreadsheet, Fill, and Down and
the successive derivatives should appear. Highlight from C2 down to C8, and click on Spreadsheet, Fill,
Down as before. Now the spreadsheet should be complete.

Continue by highlighting cells C2 down to C8, clicking on the Copy button, clicking on the command
line just below the spreadsheet, and then clicking on the Paste button. Important: put a colon at the end of
MATRIX material and <Enter> . Convert the matrix to a list as shown, and then note that we have a list
of small matrices. We want to formulate our coefficients for the Taylor series without the matrix brackets
and this is done in our definition of the function b . Check out the numerator of the fraction. We have
c[n+1] as the nth matrix in c if we start with 0. That matrix has one entry, and to access that number we
use (c[n+1])[1].

The coefficients for the Taylor polynomial, T6 , are b(0), b(1), b(2), b(3), b(4), b(5), b(6), which we enter
as b(n) in the summation. We used x − a which is easier than x − Pi/6. Then, let Maple do the same
thing in one line. Compare the coefficients.

Taylor Series Worksheet
> restart: with(student):

> f:=x->cos(2*x);

f := x→ cos(2x)
> a:=Pi/6:

> MATRIX([[1/2], [-sqrt(3)], [-2], [4*sqrt(3)], [8],[-16*sqrt(3)], [-32]]):

> c:=convert(%,listlist);
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c := [[1/2], [−
√

3], [−2], [4
√

3], [8], [−16
√

3], [−32]]

> b:=n->(c[n+1])[1]/n!;

b := n− >
cn+11

n!
> T6:=sum(b(n)*(x-a)ˆn,n=0..6);

T6 :=
1
2
−
√

3
(
x− 1

6
π
)
−
(
x− 1

6
π
)2

+
2
3

√
3
(
x− 1

6
π
)3

+
1
3

(
x− 1

6
π
)4
− 2

15

√
3
(
x− 1

6
π
)5

− 2
45

(
x− 1

6
π
)6

> taylor(f(x),x=a,7);

1
2
−
√

3
(
x− 1

6
π
)
−
(
x− 1

6
π
)2

+
2
3

√
3
(
x− 1

6
π
)3

+
1
3

(
x− 1

6
π
)4
− 2

15

√
3
(
x− 1

6
π
)5

− 2
45

(
x− 1

6
π
)6

+ O
(
(x− 1

6
π
)7

C2M13 Problem: Use Maple and the method illustrated above to find a Taylor polynomial, T6 , for
f(x) = arctan(x) at a = 1. Your work should display the spreadsheet, T6 , and the Maple solution.

C2M14

Animation of Taylor Polynomials

From our text we have seen that a function f(x) may be written as the sum of an nth degree polynomial
Tn(x) and a remainder term Rn(x) which tends to 0 as n approaches infinity. For an open interval |x−a| < R

f(x) = Tn(x) + Rn(x) Tn(x) =
n∑

i=0

f (i)(a)
i!

(x− a)i lim
n→∞ Rn(x) = 0

It should be obvious to the reader at this point that Tn approximates f on the interval |x − a| < R
and that as n increases and we take more terms then the approximation improves. It is our objective here
to provide a graphical illustration of this process. The function that we will use as our introductory example

is f(x) =
1

1 + x
. Our experience with geometric series allows us to “play Jeopardy” and pose “ 1

1+x is the

sum of what series?” Our response is “What is the sum of 1− x + x2 − x3 + x4 − x5 . . . ” This allows us to
easily identify T3(x) = 1− x + x2 − x3 as a simple approximation to f(x). Now we will set all this up in
Maple and display the functions.

> restart: with(student):
> f:=x->1/(1+x);

f := x→ 1
1 + x

We are going to set up values to serve as domain and range of our plots and an expression which is
really T3(x).

> a:=-2: b:=2: c:=-5: d:=10:
> P:=1-x+xˆ2-xˆ3;

P := 1− x + x2 − x3

> plot([f(x),P], x=a..b,y=c..d,color=[blue,red],thickness=[1,2]);
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Now we begin the process of setting up our sequence of Taylor Polynomials, which we do by identifying
the degrees that we want to see displayed. We will select the first 29 Taylor Polynomials. So, we will start
with 1 and increase by 1 until we reach 29. Continuing our worksheet,

> nstart:=1: skip:=1: frameno:=29:
> framenumbers:=[seq(nstart + skip*i, i=0..frameno-1)]:
framenumbers := [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

Now we will set up our frameno (29) Taylor polynimial plots and they will appear in red.

> A:=display(seq(plot(convert(taylor(f(x),x=0,i),polynom,
x=a..b,y=c..d,style=line,thickness=2,numpoints=100,
title="degree = ".i),i=framenumbers),insequence=true):

We need matching plots of f(x), which will appear in blue.

> B:=animate(f(x),x=a..b,y=c..d,frames=frameno,color=blue):

Combine all this into one plot.

> display(A,B,view=[a..b,c..d]);

30



-4

-2

0

2

4

6

8

10

y

-2 -1 1 2
x

degree = 1

You should see the first Taylor Polynomial, which is y = 1, displayed with the graph of f(x). Click on
the display and a box should appear around the display. Also, a new menu bar appears so that you have
what looks like the buttons for a tape player on the bottom line. The button on the left is “stop” and the
button next to it is “play”. Click on this button.

You should see the rapid display of the Taylor Polynomials with f(x). Now try the next button to the
right, and click on it repeatedly.

If you just want to display a few frames of the animation, it is simpler to just identify the numbers of
the frames. The lines below could replace the commands above to get a list of frame numbers.
> framenumbers:= [1,3,5,7,9,11,13,15,17,19,21,23,25,27,29];

framenumbers := [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29]
> frameno:=nops(framenumbers);

frameno := 15
The Maple command nops returns the number of elements in the list.

C3M14 Problems: 1. Use −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10 to set up an animation for the Taylor
Polynomials of sin(x) with a = 0.
2. Make up a Taylor Polynomial animation example using an interesting function of your choice.

C2M15

Vectors and the Scalar Product

The scalar, “dot”, or “inner” product of two vectors is a very important concept that involves the size of
each and the amount that each points in the direction of the other. This nebulous statement will have more
meaning as you become familiar with vectors. In Maple, use evalm when evaluating a vector or matrix
expression. Also, you will need the package linalg. In earlier versions of Maple one used dotprod to find
the scalar product of two vectors. However, in Release 5 and 5.1 this command seems to be of better use
when working with complex scalars. We are using only the real numbers, IR, so it is best to use the Maple
command innerprod when finding the scalar product.

31



The concept of finding the projection of one vector on another is very important. First, the projection
is a vector. Second, it is a scalar multiple of the vector being projected on, which must be a non-zero vector.
When that scalar multiple is subtracted from the first vector the result is a vector that is orthogonal to the
vector being projected on. Let’s find the projection of −→v1 = 〈2, 1,−3〉 on −→v2 = 〈1,−2, 2〉 . We will find the
scalar c symbolically and then let Maple do the calculations and verify that it works. We seek c so that
(−→v1 − c−→v2) · −→v2 = 0. The projection of −→v1 on −→v2 is the vector c−→v2 . Recall that two vectors are orthogonal
(or perpendicular) if their scalar or dot product is 0.

(−→v1 − c−→v2) · −→v2 = −→v1 · −→v2 − c−→v2 · −→v2 = 0
=⇒ −→v1 · −→v2 = c−→v2 · −→v2

=⇒ c =
−→v1 · −→v2
−→v2 · −→v2

The denominator −→v2 · −→v2 cannot be 0 because −→v2 is assummed to be non-zero. In Maple we have
> with(linalg):
> v1:=vector([2,1,-3]): v2:=vector([1,-2,2]):
> c:=innerprod(v1,v2)/innerprod(v2,v2);

c :=
−2
3

> proj:=evalm(c*v2);

proj :=
[−2

3
,
4
3
,
−4
3

]
> ortho:=evalm(v1-proj);

ortho :=
[
8
3
,
−1
3

,
−5
3

]
> innerprod(ortho,v2);

0
The “norm” or means of measuring the length of a vector that is most important to us is a special case

of the so-called p-norm. We demonstrate for the vector −→v = 〈2,−3〉 .

||−→v ||p = (|2|p + | − 3|p)1/p

This has meaning if p = 2 and we will always use that value. So we will suppress the subscripts. This
explanation is provided so that the ‘2’ in the Maple command makes some sense. If you divide a non-
zero vector by its length you have a vector of length one, called a “unit” vector. This process is called
“normalizing” a vector. The vector −→u below is a unit vector in the direction of −→v .

||−→v ||2 = ||−→v || = ||〈2,−3〉|| =
√

(2)2 + (−3)2 =
√

13 −→u =
1√
13
〈2,−3〉

Returning to the Maple worksheet that we started above, let’s compute ||−→v2 || and normalize −→v2 . The Maple
command normalize assumes that the ‘2’ norm is being used.
> lengthv2:=norm(v2,2);

lengthv2 := 3
> u2:=normalize(v2);

u2 :=
[
1
3
,
−2
3

,
2
3

]
Recall that −→a · −→b = ||−→a || ||−→b || cos θ , where θ is the angle between −→a and −→b . Obviously, for non-zero

vectors −→a and −→b we can solve for cos θ and thereby determine θ .

cos θ =
−→a · −→b
||−→a || ||−→b ||

Maple saves us the work with the command “angle”.
> theta:=angle(v1,v2);

θ := π − arccos
(

1
21

√
14
√

9
)
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> theta:=evalf(theta);
θ := 2.134738969

> theta1:=evalf(theta*180/Pi);
θ1 := 122.3115332

This makes sense in the following diagram where we see that θ must be an obtuse angle since the
projection is opposite to the direction of −→v2 .

Theta

z

y

x

O

ortho

proj

V2

V1

The projection of −→v1 on −→v2

A line between two points P and Q is parameterized by α(t) = (1− t)−→P + t
−→
Q for 0 ≤ t ≤ 1. We will

use this in combination with spacecurve to plot lines.

Example: Plot the coordinate axes and the line segment from P (4,−1, 2) to Q(1, 4, 4).

> with(plots):
> P:=vector([4,-1,2]): Q:=vector([1,4,4]):
> xaxis:=spacecurve([t,0,0],t=0..3,color=black):
> yaxis:=spacecurve([0,t,0],t=0..3,color=black):
> zaxis:=spacecurve([0,0,t],t=0..3,color=black):
> alpha:=evalm((1-t)*P+t*Q);

α := [4− 3t,−1 + 5t, 2 + 2t]
> LPQ:=spacecurve(alpha,t=0..1,color=red):
> LP:=spacecurve(evalm(t*P),t=0..1,color=blue):
> LQ:=spacecurve(evalm(t*Q),t=0..1,color=green):
> display(xaxis,yaxis,zaxis,LPQ,LP,LQ);
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C2M15 Problems:

1. Use Maple to find the projection of −→v = 〈3,−3, 5〉 on −→w = 〈−6, 3, 2〉 . Find a unit vector in the direction
of 2−→v −−→w .

2. Use Maple to find the angle between −→v = 〈2, 2,−1〉 and −→w = 〈3,−4, 5〉 . Find a unit vector in the
direction of −−→v .

3. Use Maple to plot the line segment from P (4, 1, 4) to Q(−1, 3, 1) and the segments from P and Q to
the origin. Include the coordinate axes as shown above. Use colors.

C2M16

Lines, Planes, and Distances in IR3

This section deals with problems finding equations of lines and planes and distances from points to these
objects. We will begin with a couple of simple examples.
Example 1: Suppose that we are given three points: P (2, 1,−1), Q(−1, 1, 0), and Q(1, 3,−1), and we
wish to find an equation for the plane that contains them and the area of the triangle that they form.

Begin by subtracting one point from the other two and finding the cross product of the results. That
cross product will serve as a normal vector to our plane. Every vector in the plane will have the same scalar
product with that normal vector. If −→N is the normal vector, −→X0 is a specific vector in the plane, −→X is any
vector in the plane, then −→X −−→X0 must be orthogonal (perpendicular) to −→N . So the basic equation for the
plane becomes −→

N · (−→X −−→X0) = 0 or equivalently −→
N · −→X = −→N · −→X0

And in Maple,
> restart: with(student): with(linalg):
> P:=vector([2,1,-1]): Q:=vector([-1,1,0]): R:=vector([1,3,-1]):
> QP:=evalm(P-Q);

QP := [3, 0,−1]
> QR:=evalm(R-Q);

QR := [2, 2,−1]
> N:=crossprod(QP,QR);

N := [2, 1, 6]
> X:=vector([x,y,z]);

X := [x, y, z]
> plane:=innerprod(N,X)=innerprod(N,P);

plane := 2x + y + 6z = −1
> innerprod(N,Q);
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−1
> innerprod(N,R);

−1
We used −→P as the known vector in the plane. After we found the equation we took the scalar product

of −→N with −→Q and −→R just to check and see if we got the same value. With Maple doing the calculations for
us no error occurred, but when doing this very basic problem with pencil and paper it is important to check
your answer.

Now let’s find the area of 4PQR . The two vectors −−→QP and −−→QR generate a parallelogram whose area
is ‖−−→QP ×−−→QR‖ = ‖−→N ‖ and the triangle is one-half of that parallelogram.
> area:=norm(N,2)/2;;

area :=
1
2

√
41

A line in IR3 requires a direction and a point on the line. If −→N = 〈a, b, c〉 is the direction vector,−→
X0 = 〈x0, y0, z0〉 is a specific point on the line, t is a scalar (parameter) and −→X = 〈x, y, z〉 is any point on
the line, then the parametric equation of the line is

−→
X = −→X0 + t

−→
N or equivalently

x = x0 + at

y = y0 + bt

z = z0 + ct

If we want a parametric equation of a line normal (perpendicular, orthogonal) to our plane above and
passing through P then
> nline:=evalm(X=P+t*N);

nline := [x, y, z] = [2 + 2t, 1 + t,−1 + 6t]
To obtain a parametric equation for the line through P in the direction of Q , we simply use −−→QP as

the direction vector.
> line:=evalm(X=P+t*QP);

line := [x, y, z] = [2 + 3t, 1,−1− t]
Let’s turn our attention to the distance from a point to a plane. Suppose ax + by + cz = d is an

equation for the plane and P is a point. You know that the coefficients a, b, c are attitude numbers for the
plane and that −→N = 〈a, b, c〉 is a normal vector. Find any point X0 which lies in the plane (X0 satisfies the
equation). Form the vector −→α = −−−−−→P −X0 . The distance from the point P to the plane will be the length of
the projection of −→α on −→N .

distance = ‖c−→N ‖ =
∥∥∥∥−→α ·

−→
N

−→
N · −→N

−→
N

∥∥∥∥ =
|−→α · −→N |
‖−→N ‖2 ‖

−→
N ‖ =

|−→α · −→N |
‖−→N ‖

Please note the diagram for this later in the section.

Example 2: Find the distance from P = (4,−3, 5) to the plane with equation 2x + y + 6z = −1.
We observe that X0 = (−1, 1, 0) lies in the plane and that −→N = 〈2, 1, 6〉 is a normal vector to this plane.

> N:=vector([2,1,6]): P:=vector([4,-3,5]): X0:=vector([-1,1,0]):
> alpha:=evalm(P-X0);

α := [5,−4, 5]
> distance:=abs(innerprod(alpha,N))/norm(N,2);

distance :=
36
41

√
41

Let’s turn our attention to finding the distance from a point to a line. If P is the point and −→X = −→X0+t
−→
N

is a parametric equation for the line, then it is easy to find X0 which is a specific point on the line. Let
−→α = P−X0 . An examination of the diagram and a little trigonometry shows that the distance d = ‖−→α ‖ sin θ

where θ is the angle between −→α and −→N . Recall that for vectors −→A and −→B , ‖−→A × −→B‖ = ‖−→A‖ ‖−→B‖ sin θ .
This leads to

d = ‖−→α ‖ sin θ = ‖−→α ‖ sin θ
‖−→N ‖
‖−→N ‖ =

‖−→α ‖ ‖−→N ‖ sin θ

‖−→N ‖ =
‖−→α ×−→N ‖
‖−→N ‖

Please note the similarities and contrasts between our two distance problems. Diagrams for each follow.
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Example 3: Find the distance from the point P = (4,−3, 5) to the line with parametric equations

x = −1 + 3t

y = 1 + 5t,

z = + 4t

We identify −→N = 〈−3, 5, 4〉 and X0 = (−1, 1, 0). In Maple
> N:=vector([-3,5,4]): X0:=vector([-1,1,0]): P:=vector([4,-3,5]):
> alpha:=evalm(P-X0);

α := [5,−4, 5]
> CP:=crossprod(alpha,N);

CP := [−41,−35, 13]
> d:=norm(CP,2)/norm(N,2);

d :=
1
2

√
123
√

2

Exercises (pencil and paper):

1. Find an equation for the plane that contains the points P (2, 3,−1), Q(−1, 1, 4), R(0, 1, 3) and the area
of the triangle that they form. Find parametric equations for the line through P and Q .

2. Find an equation for the plane that contains the points P (1,−1, 1), Q(0, 2,−1), R(3, 3,−1) and the area
of the triangle that they form. Find parametric equations for the line through P and Q .

3. Find the distance from the point P (3, 3,−2) to the plane whose equation is 2x− 3y + 2z = 7.

4. Find the distance from the point Q(3, 2,−1) to the plane whose equation is x + 4y − z = 6.

5. Find the distance from the point P (3, 3,−2) to the line through Q(1, 2,−1) and R(3,−1, 5) and find
parametric equations for the line.

6. Find the distance from the point P (−2, 1, 3) to the line through Q(0, 2,−1) and R(−1, 4, 1) and find
parametric equations for the line.

C2M16 Problems Use Maple to solve the problems 1, 3, and 5 above.
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SUMMARY OF MAPLE COMMANDS

Using the package ‘student’
Maple Command Output
area:=Pi*rˆ2; area := πr2 Sets πr2 as an expression in r named area
f:=x->sqrt(4+9*xˆ2); f := x→ √4 + 9x2 Sets

√
4 + 9x2 as a function named f(x)

subs(r=5,area); 25π Substitutes 5 into the expression area as r
f(1);

√
13 Evaluates the function f at 1

eval(expr,x=a); Evaluates the expression expr at x = a
plot(area,r=1..4); Produces a plot of expression area , r ranges from 1 to 4
plot(f(x),x=-2..5); Produces a plot of function f(x), x ranges from −2 to 5
diff(area,r); 2πr The derivative of the expression area with respect to r
diff(f(x),x); 9 x√

4+9x2 The derivative of the function f(x) with respect to x

int(area,r); 1
3πr3 The anti-derivative of the expression area with respect to r

int(area,r=1..4); 21π The definite integral of area from 1 to 4.
evalf(%); 65.97344573 The decimal form of the previous expression, 21π
Int(area,r);

∫
π r2 dr The inert expression whose value is the antiderivative of area

sum(f(k),k=n1..n2); Evaluates the sum
k=n2∑
k=n1

f(k) of f(k) from n1 to n2

leftbox(f(x),x=a..b,n); Displays the Riemann sum graphically for f(x) over the interval [a, b] using n
intervals and left endpoints

rightsum(f(x),x=a..b,n); Displays the Riemann sum in summation form for f(x) over the interval [a, b]
using n intervals and right endpoints

Using the package ‘plots’
spacecurve([f(t),g(t),h(t)],t=a..b); Displays the three-dimensional curve defined parametrically by

three expressions in t , which ranges from a to b
plot3d(expr,var1=a..b,var2=c..d); Displays a surface for an expression in two variables
plot3d([expr1,expr2,expr3],var1=a..b, Displays a surface parametrically as a function of two variables

var2=c..d);
cylinderplot(expr,var1=a..b,var2=c..d); Displays z =expr in terms of r =var1 and θ =var2
polarplot(expr,var=a..b); Displays a polar coordinate plot of r =expr in terms of θ =var
sphereplot(expr,var1=a..b,var2=c..d); Displays ρ =expr in terms of θ =var1 and φ =var2
cylinderplot([expr1,expr2,expr3], Displays a 3-d cylindrical plot parametrically, (r, θ, z)

var1=a..b,var2=c..d);
polarplot([expr1,expr2,var=a..b]); Displays a parametric polar coordinate plot of r =expr1 and

θ =expr2
sphereplot([expr1,expr2,expr3], Displays a 3-d spherical plot parametrically, (ρ, θ, φ)

var1=a..b,var2=c..d);
implicitplot(equation,var1=a..b, Displays a 2-d implicit plot of equation

var2=c..d);
implicitplot3d(eqn,var1=a..b, Displays a 3-d plot for the equation eqn

var2=c..d,var3=e..f);
display({Plot1,Plot2,..,Plotn}); Displays n plots on the same coordinate system

Using the package ‘linalg’
A:=vector([a,b,c]); Assigns the name A to the vector 〈a, b, c〉
A[1]; A[2]; A[3]; The components of the vector A are displayed
F:=vector([expr1,expr2,expr3]); Assigns the name F to the vector expression
map(diff,F,t); Gives the derivative of the vector −→F with respect to t
innerprod(A,B); Finds −→A · −→B , the scalar product of vectors −→A and −→B
crossprod(A,B); Finds −→A ×−→B , the cross product of vectors −→A and −→B
evalm(A+c*B); Finds A + cB for vectors −→A and −→B , and scalar c

hessian(f,[x,y]); Finds the hessian matrix
[

fxx fxy

fyx fyy

]
for the function f of x and y

det(A); Finds the determinant of the square matrix A
subs({x=a,y=b},op(H)); Substitutes values for x and y into components of matrix/vector H
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